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Abstract

Cust-omers arrive at a service area according to a Poisson process. An

arriving customer must choose one of K servers without observing present

congestioii levels. The only available information about the k-th server

is Lhe service time distribution (with expected duration Vk -I ) and the cost

per unit time of waiting at the k-th server (hk). Although service distri-

butions may differ from server to server and need not be exponential, it is

assumed that they share the same coefficient of variation. Individuals

acting in self-interest induce an arrival rate pattern (XIA 2,.. ,XK).

In contrast, the social optimum is the arrival rate pattern (AIA2,.. ,X*)

which minimizes long run average cost per unit time for the entire system.

The main result is that Xk's and \ 's differ systematically. Individuals

overload the servers with the smallest hk/pk values.

Fqr an exponential service case with pre-emptive LIFO service an alter-

native charging scheme is presented which confirms that differences between

individual and social optima occur precisely because individuals fail to

consider the inconvenience that they cause to others.
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Following the pioneering work of Naor [221, considerable attention has

been devoted to comparing individual joining behavior to socially optimal

joining behavior at a queuing system. The works of Naor [221, Lippman and

Stidham (19], Adler and Naor [1], Knudsen [16], Knudsen and Stidham [17),

Yechiali 129,30] and others all indicate that individuals acting in self-

interest tend to over-congest a system relative to the social opt1mma.

This phenomenon arises because a self-interested individual fails to con-

sider the impact of his joining on later arrivals.

In the above models the joining decision depends on the observed

current congestion level at the facility, thus inducing a state-dependent

arrival rate. In contrast, our model will assume that: (1) the overall

arrival rate is fixed but upon arrival customers must choose (or be assigned

( to) one of several alternative servers, each with its own queue. Balking,

reneging, or Jockeying are not permitted. (2) customers can not observe

the current queue length at each server, but they are aware of the service-

time distributions and waiting costs at the various servers. We will demon-

strate that there are systematic differences between individual and social

optimization; for a special case these differences will be shown to result

from the failure of an individual to consider the impact on others of his

Joining a particular queue.

Since the allocations in our model are not functions of the state of

the system, it is a design model, in contrast to the control models of

Bell 12-61, Doshi [9], Heyman [141, Lippman and Stidham [19]. Sobel (251,

Winston [28) and others cited in the survey papers of Stidham and Prabhu [24]

and Sobel 126]. Alternative design models for stochastic service systems

have been studied by Morse 1211. Hillier [151, Mangelsdorf [201, Evans (101,

Kumin [181, Stidham [231 and others.
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Section 1 contains preliminary results concerning the socially and

individually optimal selection of the arrival rate to an isolated M/G/l

facility, with a fixed reward for each entering customer and a linear

waiting cost. These results are of independent interest and also form the

basis for our Lagrangian analysis of the multi-facility model. Section 2

presents the basic multi-facility model, analyzes the social-optimum and

individual-optimum problems, and compares the allocations. For the main

result of Section 2 (Theorem 4) we do not require exponential servers but

do insist that the service-time distributions share a common coefficient of

variation. A counterexample is provided for the case where the coefficients

of variation are allowed to differ. Section 3 treats the special case of

exponential servers in more detail. Explicit formulas are given for the

socially and individually optimal allocations to each facility as functions

of the overall arrival rate. We also give (in Section 4) an alternate

charging scheme for inducing socially optimal behavior on the part of

individuals.

1. Preliminary Results: Isolated Single-Facility Model

We assume:

(1) a Poisson arrival process with rate X (a decision variable);

(2) a single server, who provides services of random duratLo:. o with

E(S) - ji , E(S2 ) - bp- ; the known constant b is (necessarily)

greater than or equal to 1; the coefficient of variation of S

is then (b- 0)1;

(3) a fixed reward a earned for each customer who enters the system;

(4) a waiting cost h per customer per unit time in the queue and in

service.



The stipulation that I is a decision variable is satisfied, for

example, in the following scenario: Arrivals to the facility are governed

by a Poisson process with fixed rate A. An arriving customer may join

or balk. The probability, p, that an arriving customer joins is a decision

variable. Given a choice of p, the induced process of Joining customers

is Poisson with rate X - pA.

The objective of social optimization is to choose an arrival rate A,

0 < X < p, to minimize the long-run average net cost per unit time.

(Rewards are treated as negative costs.) If arrival rate A prevails, then

the facility is an H/G/1 queue with an average of L(X) customers present.

The Pollaczek-Khintchine formula (cf. Cox and Smith [71 or Gross and

Harti [121) yields:

L(A) = (//P) + X 2b/(2(i- A)). (1)

The social optimum X is then the solution to:

minimize hL(X) -aX - X[(l/p)+ Xb/(2p(u- A))-a] (2)

subject to 0 < X <.

The objective function in (2) is differentiable and strictly convex.

Denoting the derivative of L(-) evaluated at X by L'(X), it follows

immediately that an optimal solution A* is characterized by

hL'(A ) a , and A > 0 (3)

or
hL(*) *

hL'( = h/v > a, and A -0. (4)

Also from (1)

L'(X) - -l +bA(21-A)/(21(v- A) 2] (5)

_---------------------



4

x*( *

Let A be the value of A determined by (3) and (4) for fixed a > 0.

It follows from (3), (4), and (5) that we can represent A*(a) by

(C) = max(0; I [ /(b+ 2ah1-2)4}. (6)

Note that A (a) - 0 for 0 < a < h/p. (There is nothing to be gained by

admitting customers if the waiting cost incurred during service alone

exceeds the reward.) Moreover, A (a) is positive, strictly increasing,

and strictly concave in i > h/p, with li A (a) , P, as expected.

Now consider the behavior of individual customers, each seeking to

maximize his expected net benefit (minimize his expected net cost). Since

all customers have the same information upon arrival, it is reasonable to

assume that all customers will use the same randomized strategy for

deciding whether to join or balk. If A is the arrival rate induced by

this common strategy (e.g., A - pA, where p is the probability of joining,

as described above), then the facility behaves as an M/G/l system with

average wait in system, W(A), for a customer who enters given by

-I
W(A) - L(A)/, -X + Ab/(2j(p- A)). (7)

The average cost of the wait in system is thus hW(X). Note that the
-1

rightmest expression in (7) can be used to define W(O) - U-1

In order for the cowwon strategy of individual customers to be in

equilibrium it is necessary and sufficient that the expected net benefit

to a joining customer be equal to 0, if A > 0, and less than or equal to 0,

if A. - 0. Otherwise, an individual customer would have an incentive to

deviate from the comon strategy either by joining with probability one if

the expected net benefit is positive, or by balking with probability one

if the expected net benefit is negative. Denoting the equilibrium
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(individually optimal) value of X by A, the necessary and sufficient con-

ditions for equilibrium are therefore

hW(X)- a, and I>0 (8)

or

hW(i) - h/P Z a, and -0. (9)

Thus, although there is no overall objective to be minimized, the

requirements (8), (9) for a solution based on individual optimization are

analogous to the requirements (3), (4) for a social optimum. Denoting by

A(*) the value of A determined by (8) and (9) for fixed a, it follows from

(7), (8), and (9) that

SA(at) - max{O; p- [b/(b+2ah p-2)]). (10)

Like A (a), !(a) - 0 for 0 < a < h/p, and i(a) is positive, strictly

increasing, and strictly concave in a > h/p, with lim i(Q) - p.

Having determined conditions satisfied by the social optimum A and

the individual optimum 1, we are in a position to compare the two solutions.

Lemma 1. For 0 < a < h/u, X (a) - A(a) - 0. For a > h/p, A(n) a (),

that is, the individual optimum solution allows more customers to

enter than is socially optimal.

Proof. The first assertion is obvious. The second assertion can be

proved directly by comparing (6) and (9). The following alternate

proof, however, is perhaps more instructive and has wider applicability.

The objective function in the social-optimum problem takes the form

C(M) - A(hW(A) - ca).

.. ... I
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Since W(X) is strictly increasing In A., we see that C(A) < 0 for

0 X < X(a), C(X(a)) = 0, and C(X) > 0 for X > A~). Since A (a) mini-

msizes C(A), it follows that *(a) < !(a).

Note that the proof of Lemma 1 required only that W(X) be strictly
-l

increasing in A > 0, with W(0) H . Hence Lemma 1 is valid for any

queuing system for which these properties hold. In fact one expects that

these properties would hold In general in queuing systems in which W(A)

is well defined as a long-run average within a suitable class of arrival

processes parameterized by the mean arrival rate A, as is the case with

Poisson processes.

2. Basic Results for Multi-Facility Model

Now we assume:

(1) a Poisson arrival process with fixed rate A > 0;

(2) K servers; server k provides services of random duration Sk with

-1 2 b 2  K

E(Sk) k -  E(Sk) - bok - ; vk > A;
k=1

(3) arrival rate Ak at server k (a decision variable); an arrival to

the system is assigned to server k with probability \/A;

(4) a waiting cost hk per customer per unit time in the queue and

in service at server k;

(5) servers numbered so that h 1 1  _ h 2 " 2 -< *.. < hYiK

Two possible scenarios which might make the assumption of a common

coefficient of variation for all service distributions plausible are:

(1) the nature of the service function is such that it is reasonable to

assume that all service distributions come from a parametric family with

this assumption, or (2) the servers represent processors which process

"work" in a deterministic fashion at a rate Vk work units per unit tim;



customers require a random duration of a server's attention because they

present the server with a random number of work units; customer work unit

requirements have expected value I and variance (b-i), coefficient of

variation (b-l)1.

The social optimization problem is one of finding an allocation,

*, 2 * "''. XK , of customers to servers so as to minimize the long-run

average cost per unit time for the entire system. If arrival rate ' pre-

vails at server k, then server k is an H/G/il queuing system with an

average of Lk(Xk) customers present, where Lk(Ak) is given by formula (1)

with A and v replaced by Xk and uk respectively. The social optimum

( ' ' 1' K ) is then the solution to:

K
minimize I hkLk()

k=l

K
subject to E Xk = A (11)

k-l

0 =k < k' k 1 1,2,...,K.

It can readily be demonstrated (e.g., using generalized Lagrange multi-

pliers) that an optimal solution to (11) satisfies equations of the form
K

(3) and (4) for each k and some value of a such that k 1 - A. Thus
k-i

(11) can be solved by a one-dimensional search over a > 0, with X (a)

defined (as in the single-facility model) by

Ak * max(0, k J1k[b/(b+ 2ahl k -2)]}. (12)

K
Since I Xk (a) is strictly increasing in a > h101-1, we need only find

k-i K **It
the unique a writh IAk(a) A. Since (a) > 0 iff a > he it

kal

Is clear that Ak 0 Implies X > 0 for J c k. Only the highest numbered

servers (if any) are not used at all.

' . ..... .. ' .... . . --
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The individual optimization problem is one of finding an equilibrium

common-strategy arrival-rate vector (1 A 29 ... 9 ) " The average wait

in system k for a customer who enters, denoted Wk( ). is given by

formula (7), with X and p replaced by 'k and Vk' respectively. By analogy

with the single-facility problem, in order for the arrival-rate vector

to be in equilibrium it is necessary and sufficient that (I) the average

cost of waiting, hkWk(Ak), be equal at all servers k that are used (i.e.,

with k > 0) and (ii) any server k with "k = 0 cannot have hk-lwihthl less than

the common average waiting cost at used servers. Similar necessary and

sufficient conditions for equilibrium were established by Dafermos [8), Hall

and Peterson 113], Wardrop [27], and other authors cited in Florian Ill] in

the context of traffic flows in a network. It follows that an equilibrium

(solution satisfies equations of the form (8) and (9) for each k and some
K

value of a such that k Xk(n) - A. Again, an equilibrium solution can be
k~l

found by a one-dimensional search over a 0 0, with Y(a) defined by:

k (a) - max{O, vk- "k[b/(b+ 2ahk-1 k 2)1}. (13)

K - n
Since k(a) is strictly increasing In a hl I we need only find

k=l K -

the unique Q with k I Xk(a) - A. Since Xk(a) >0 iff a > hkk it is
k=1

clear that Xk > 0 implies A • 0 for j < k.

We now compare the social optimum and individual optimum solutions

for the multi-facility problem. We first prove Lemma 2, which establishes
* A

that - 0 implies Ak a 0 : the social optimum makes use of at least as

many servers as the individual solution.

....-- -----.
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Lmm 2. a > ..

Proof. Suppose a < &. Then from (12) and (13), 0 implies A 0.

a k -0 Implieshkd-0.

On the other hand, if i k > 0, then by Leimma 1
x '( )  " * *(*) * K *.,

A k k > k(a) > ( Ak. Hence I (A - A is positive,k- k k

since it contains at least one positive term and no negative terms.
K K

This contradicts the requirement that k I k - I Ak A. Thus

* a. k-I k-

For each k - 1,2,...,K, define pk: *k /Ik and Pk: - Ak/ik"

Dividing both sides of (12) and (13) by uk yields the following result,

which is used in the proof of the main theorem.

(i) X > 0 P > pj with equality only if hil Pi h uj ;
i*

(ii) :i > 0 -P P with equality only if hiu 1  = h pj1 .

We are now ready for the main theorem, which shows that individual optimiza-

tion systematically overloads the lower numbered servers (those with

smallest hk/k).

Theorem 4. If i i  then X > for all j > i.

Proof. Assume i < J. First Ai 0 andA * >  imply i 0 and hence
i ~ i

A - A - 0 by Lemmia 3 and thus the theorem holds. Now suppose

Ai  > 0 and A i  -iO but A <J. Then Lemas 2 and 3 imply all of• * -j

i AJ A are positive. From (3) and (8)

hiLi'(Xi*) h * hLig(A 1*) (14)

hi ) -10, h W 4A). 0(15)
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Define p: - A/p and

f(p): pb/(2(l-p)). (16)

Note that f(p) is differentiable, non-negative, strictly Increasing, and

strictly convex in 0 < p < 1. We shall also need the following property

of f(.), which is easily verified from (16) by differentiation:

pf'(P)/f(p) is strictly increasing in 0 < p < 1. (17)

It follows from (1) and (7) that L(A) - p(l+f(p)), L'()=p-l (l+f(p)+pf'(p)),

and W(A) - p-1(1+ f(p)). Hence (14) and (15) can be rewritten in equiva-

lent form:

(hi t-1)(l+f(pi*)+pi f(Pi)) a * (hi (l + f(P +Pf(p*)) (18)

(h i-1)(l+f(pi)) + & 6 (hiPj-1 )(l + f(6j)). (19)

By the hypotheses, pi > Pi and p < p It follows by subtracting (19)

from (18) and using the fact that f(e) is strictly increasing and strictly

convex that

(hili i- ) p f' - (h < -)
((i P - -01 < -PplV6 (20)

But (19) and the fact that hu -  < hij-  imply that

(h ~-)f6p)_ (h P -)f6p) (21)

Dividing (20) by (21) yields

Pf'(0 )/W(1 < jfoIGj)/f(oj) i

from which it follows, using property (17), that < &J, which is a

contradiction of Lems 3. Therefore, it cannot be true that both

-.. -- .. .- - .. . . . . . . . .,-... .. . . . -
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P P and P < . We conclude that P > implies P > $j, the
I~~~ -

desired result.

Note that f(p) as defined by (16) equals the average waiting time in

the queue, expressed in units of mean service time. Thus Theorem 4 is

valid for any multi-facility queuing system in which the average waiting

time at each facility k, normalized in this way, is a function only of the

traffic intensity, Ak/Mk, at that facility, the function is the same for

all facilities, and it has the properties referred to in the proof of the

theorem: strictly increasing, strictly convex, and property (17). Note

also that in order for these properties to hold it suffices for f to be

strictly increasing and log convex.

Theorem 4 assumes that all service time distributions share a common

coefficient of variation and demonstrates that individuals overload servers

k with low hk/k' If these coefficients of variation are allowed to differ

from server to server one might suspect a tendency to shy away from

servers with a particularly high coefficient of variation. This tendency

provides our counter-example.

Let server 1 have U1 1+10 - 8 , h 1.1, b 1 .2 (e.g., exponential service)

and let server 2 have 02 = 1. h2 1, b2 = 1 (constant service) so that

hl/j 1 <h2  2. Using (12) and (13), X, and 1 can be found to be .435 and

.414 respectively. Thus (A1
.  - A1) .021 while ( 2*- )2) =-.021, contra-

dicting Theorem 4.

3. Further Results for Exponential Servers

Throughout this section we assume an exponential service-time distri-

bution. In this case b- 2 and the expressions for Xi*(a) and X (a) become,

respectively,

"--11 : .2.=_- ,,21 :-- - _ - - .. . .... .. ... .- , : "- - -- -.---..- - - -
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A 00)- msx{O, PI- (h IVI/);) (22)

xI(a) - max{O, PI- h1/0l. (23)

To find the social optimum allocation, A x 2 " " . for a given

system arrival rate A, we know from the analysis in section 2 that it

K
suffices to find the unique L-a such that *(a A. Similarly,

i-i

to find the equilibrium allocation, AXx K, it suffices to find
K

the unique a- a such that L(a) - A.

Define k : - max(k)* > hkik' k -maxtkl& > hkpk 1) Then the

open facilities In the social (individual) optimum allocation are facili-

ties 1 through k(k), where k > k by Lemma 2. It follows from (22) and

(23) that

k
X (I- (hiyi/ct) ) / A,
1-1

i-l

from which we see that

* L I i1 A] ( k Ui (24)

1 [i- u - A] ill hi) (25)

Now k* is the unique k such that hk - 1  (withkk < a< h+lpk+1- l t hk+lpk+l-

replaced by - when k - K). Similarly, k Is the unique k such that

-hk1k < k+l1k+I  . CombinIng these inequalities with (24) and (25)

yields the following characterizations:

L ------ ~-~~, -r--..
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k -1 k ( k
k -k iff [-(hk-. ) (h <Sl k iI m imli

kk

(hk+ -1hk+l) I (h ipi) (26)
i-i

and

k 1 k k
k-k 1ff " -(h -"k ) j.h 1 <A < i

i- -i i-

- (h k1 Pk )Xlhi. (27)

k k

Now define rk: I [Pk -(hk-Pkhii) S1 E k l-(hk-'khu il]'
ini Li

K

k 1 l,2,...,K, and rK+l: SK+l: P (Note that rl- a, - 0.) It

follows from (22)-(27) that the socially optimal and individually optimal

allocations are given by the following explicit formulae:

*10. if 0 <A < rj

Pj- [(hjUj) z/(hii)'] ( j i- A). if rk< A _ rk+I ,  (28)

J_<kK

0,if 0 < A < a

J=k k

J 1 Uh • -It < (29)

Theme formulae reveal that in both the socially optimal and the

individually optimal allocations, each faclity gets a share, p A. of
K

the total excess service capacity, I PiA, of all open facilities. In
L-

the socially optimal allocation, the share given to facility J is proportional

L.--~w.--
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to (h i i), whereas in the individually optimal allocation it is propor-

tional to h V Note also that A and A are both piecewise-linear In A.

K
0 < A <c I p and concave over the range where they are positive.

ii

4. An Alternative Charging Scheme for the Exponential Service Case

Throughout this section we again assume exponential service. Although

we have been unable to derive analogous results for other cases, results

in this section demonstrate explicitly that not being required to consider

others causes individual behavior to fail to attain a social optimum.

Since b 2 for exponential service, (1) can be simplified and the rela-

tionship L- XW used to write

Wk(Xk) - l/(Uk - Ak) (30)

and (5) can be rewritten as

2
Lk'(Ak) - k/( k - Xk) 2  (31)

For individual optimization all hkWk(Ak) for Xk' 0 are equated and for

social optimization all hk (Xk for Xk >0 are equated.

None of our results to this point have required that the service

discipline be specified. For clarity we assume that each server provides

pre-emptive LIFO service. Under this assumption an arriving customer at

server k remains in the system for one K/M/l busy period and pays hk per

unit tine while there. With LIFO service he inconveniences those customers

who are already in the system and forces them to wait through one addi-

tional busy period; however, he is not charged in any way for inconven-

iencing others.
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As an alternative, assume that an arriving customer sust pay h.k per

unit tine for himself and for each of the other customers whom he incon-

veniences. Then his average cost is

h(O -l -11 + )k(u - Xk)-l (32)

where k -k) is the average busy period length. Yuk ) Y is the

average number of other customers present when he arrives, and the term in

brackets In (32) is the average number of customers inconvenienced

including himself. But (32) simplifies to hkuak(l k - Ak)- 2 . With this

revised charging scheme an equilibrium arrival rate vector (1#2""" "K )

would be established equating k Uk( k-

these are exactly the conditions for a social optimum. Thus (in this

context) individuals will act in a socially optimal way when they are

forced to explicitly pay for the inconvenience caused to others.

ON - -- - -- - - - -- -
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